Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jian-Rong Han* and Xiao-Li Zhen

College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China

Correspondence e-mail:
han_jianrong@163.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in main residue
R factor $=0.068$
$w R$ factor $=0.141$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[6-(5-Formyl-2-methoxyphenoxy)hexyloxy]-4-methoxybenzaldehyde

The title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$, lies on crystallographic center of symmetry. Each isovanillin group makes a dihedral angle of $8.0(4)^{\circ}$ with the six C atoms in the central chain. The two aromatic rings are parallel to each other by symmetry.

Comment

The pioneering work of Pedersen (1967) on the synthesis of macrocyclic crown ethers was a milestone in this field of chemistry. These compounds are capable of forming stable and selective complexes with alkali and alkaline earth metal ions. Consequently, a significant effort has been devoted to the synthesis of derivatives and these species have been used to study their molecular recognition of special guest molecules and cations (Lee et al., 2000; Zhang \& Buchwald, 2000). As part of our interest in the molecular and ionic recognition properties of crown ethers, we investigated the title compound, (I), which is used as a precursor in the preparation of crown ethers.

In (I) (Fig. 1), a crystallographic center of symmetry is located at the mid-point of the central $\mathrm{C} 11-\mathrm{C} 11^{i}$ bond [symmetry code: (i) $-x+1,-y-1,-z$]. Each isovanillin group ($\mathrm{C} 1-\mathrm{C} 6 / \mathrm{C} 8 / \mathrm{O} 1 / \mathrm{O} 2$) is essentially planar. The chain of atoms $\mathrm{C} 9-\mathrm{C} 11 / \mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 9^{\mathrm{i}}$ linking the two isovanillin groups is planar. The two aromatic rings in the molecule are exactly parallel to each other by symmetry. The $\mathrm{C} 9-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$ torsion angle of 174.1 (3) ${ }^{\circ}$ confirms the nearly planar conformation of the molecule. The geometry is similar to that reported recently for the closely related species $4-[6-(4-$ formyl-2-methoxyphenoxy)hexyloxy]-3-methoxybenzaldehyde (Diao et al., 2005). However, the dihedral angle between the bridge plane ($\mathrm{C} 9-\mathrm{C} 11 / \mathrm{C} 11^{\mathrm{i}}-\mathrm{C} 9^{\mathrm{i}}$) and the isovanillin group plane is $8.0(4)^{\circ}$, in comparison with $3.0(3)^{\circ}$ in 4-[6-(4-formyl-2-methoxyphenoxy)hexyloxy]-3-methoxybenzaldehyde. One of the O atoms is disordered over two positions, O3 and O3' [occupancies 0.854 99)/0.146 (9)]. Otherwise, the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The crystal packing arrangement is shown in Fig. 2.

Received 22 November 2005 Accepted 21 December 2005 Online 7 January 2006

Experimental

1,6-Dibromohexane $(12.2 \mathrm{~g}, 50 \mathrm{mmol})$ was added dropwise to a solution of 3-hydroxy-4-methoxybenzaldehyde ($15.2 \mathrm{~g}, 100 \mathrm{mmol}$) and potassium carbonate $(13.8 \mathrm{~g}, 100 \mathrm{mmol})$ in acetonitrile $(500 \mathrm{ml})$ over a period of 30 min , and the mixture was refluxed for 24 h under a nitrogen atmosphere. The solvent was removed and the resultant mixture was poured into ice-water $(500 \mathrm{ml})$. The white precipitate was then isolated and recrystallized from ethanol to give the pure compound in 45% yield. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6}$
$M_{r}=386.43$
Monoclinic, $P 2_{b} / c$
$a=10.867$ (5) A
$b=5.154$ (2) \AA
$c=18.454$ (8) \AA
$\beta=91.528$ (7) ${ }^{\circ}$
$V=1033.2$ (8) \AA^{3}
$Z=2$
$D_{x}=1.242 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1065 reflections
$\theta=2.9-26.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.24 \times 0.16 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.952, T_{\text {max }}=0.991$
4602 measured reflections

Figure 1
The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level. Only the major component of the disordered aldehyde group is shown. [Symmetry code: (i) $-x+1,-y-1,-z$.]

Figure 2
A view, down the b axis, of the packing arrangement in the crystal structure of (I). Only the major component of the disordered aldehyde group is shown.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Diao, C.-H., Guo, M.-J., Yu, M., Chen, X. \& Jing, Z.-L. (2005). Acta Cryst. E61, o3670-o3671.
Lee, C.-W., Jung, E. J., Lee, S. J., Ahn, K. H. \& Kim, K. S. (2000). J. Org. Chem. 65, 7225-7227.
Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Zhang, X.-X. \& Buchwald, S. L. (2000). J. Org. Chem. 65, 8027-8031.

